
Online Normalization Algorithm for Engine Turbofan Monitoring 

Jérôme Lacaille
1
, Anastasios Bellas

2
 

1
Snecma, 77550 Moissy-Cramayel, France 

jerome.lacaille@snecma.fr 

2
SAMM, Université Panthéon-Sorbonne,  75013 Paris, France 

anastasios.bellas@malix.univ-paris1.fr 

 

 
ABSTRACT 

To understand the behavior of a turbofan engine, one first 

needs to deal with the variety of data acquisition contexts. 

Each time a set of measurements is acquired, and such set 

may account for tens of parameters, the aircraft evolves in a 

specific flight mode. A diagnostic of the engine behavior 

models the observations and tests if anything appears as 

expected. A model of the engine measurement vector may 

be very complex to produce and even more to deploy on 

board. The idea is to solve the problem locally on recurrent 

phases on which each single problem may be easier to 

answer. Civil flight missions are straightforward to 

decompose as they are very recurrent. It is more difficult 

with military missions and bench tests. Once a set of phases 

is defined, local regression models may be built. To solve 

nonlinearities a selection of computed variables is a good 

approach but such algorithm needs the definition of a stable 

set of recurrent phases and a very complex learning 

procedure that uses a huge amount of memory to deal with 

the high dimensionality of the problem. Such algorithm is 

very powerful but is not adapted for an online use. Our new 

solution does not require the a priori knowledge of recurrent 

phases; it learns recurrent contexts on the fly and adapts a 

small local regression model on a selected optimal subspace. 

The application of this algorithm seems to be efficient on 

long term flight trend monitoring and on real time test bench 

measurements. It solves the memory problem for calibration 

by an iterative autoadaptive procedure and suppress the 

need of preliminary computations of specific parameter as it 

auto-adapts itself with piecewise linear models.  

1. INTRODUCTION 

Turbofan engine abnormality diagnosis uses three steps: 

reduction of dependencies from the flight context (1), 

representation of the measurement in an adequate metric 

space suitable for classification and statistic testing (2) and 

finally identification of abnormal behavior (3) as 

represented on Figure 1 (next page). This work essentially 

deals with the first normalization step. 

The current text focus on identification of flight phases to 

extract subsamples of temporal observations where the 

turbofan gross behavior may be explained by simple 

(eventually linear) models. This example is easy to 

visualize, but we also use the same algorithm on different 

applications. At component level we monitor the start 

system (Flandrois, Lacaille, Massé, & Ausloos, 2009; 

Lacaille, 2009), the fuel system and other turbofan 

components. Even to monitor bench test cells we look at 

vibration monitoring according to load parameters and lots 

of different other configurations (Lacaille & Gerez, 2011, 

2012). 

The first step of the algorithm is to get rid of acquisition 

context. This is mandatory because we need to compare 

similar events, observations corresponding to one unique 

and standard context. For this purpose we use a 

normalization algorithm (Figure 1, step 1). The classical 

method is to use a model of the engine observation 

measurements named endogenous parameters according to 

the flight context also referred as exogenous parameters (see 

Table 1 for a list of parameter examples). The residual 

between real endogenous parameters and the model results 

is then used as inputs to a scoring algorithm (Figure 1, step 

2) which is essentially a statistical test that measures the 

likelihood of the current observation. The main problem is 

the construction of such residual. As the engine behavior is 

definitely nonlinear according to the flight measurements a 

suggestion is to cut the flight in recurrent phases: taxi, 

takeoff, climb, cruise, descent, etc. and models the behavior 

locally on those phases. However as such decomposition 

seems easy to build on civil mission it is a real challenge on 
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military missions which all are different as well as for 

helicopter missions, business jets and event test bench tests. 

Table 1 – Example of context information and endogenous 

measurements. Context parameters are mainly commands 

that describe the current engine use but also aircraft attitude. 

Endogenous measurements represent the observation we are 

really interested in to describe the engine behavior if the 

context was always the same during acquisition 

  Name Description 

Index information 

  AC_ID Aircraft ID 

  ESN Engine Serial Number 

  FL_DATE Flight Date 

Context information 

  TAT External temperature 

  ALT Altitude 

  AIE Anti Ice Engine 

  AIW Anti Ice Wings 

  BLD Bleed valve position 

  ISOV ECS Isolation Valve Position 

  VBV Variable Bleed Valve Position 

  VSV Variable Stator Vane Position 

  HPTACC High Pressure Turbine Active Clearance Control 

  LPTACC Low Pressure Turbine Active Clearance Control 

  RACC Rotor Active Clearance Control 

  ECS Environmental Control System 

  TLA Thrust Lever Angle 

  N1 Fan Speed 

  XM Mach Number 

Endogenous measurements 

  N2 Core Speed 

  FF Fuel Flow 

  PS3 Static pressure after compression 

  T3 Temperature after compression 

  EGT Exhaust Gas Temperature 

 

Our first approaches uses manual extraction of flight phases 

for civil engines and a LASSO algorithm for the selection of 

pertinent analytical combinations of parameters to build the 

regression model and then a autoadaptive clustering method 

that uses a self-organizing map (SOM) to identify the 

different faults or behavior differences (Figure 1, step three  

“identification”). This work was presented in previous work 

(Côme, Cottrell, Verleysen, & Lacaille, 2010, 2011; Cottrell 

et al., 2009; Lacaille & Côme, 2011). 

Even when flight mode identification of recurrent phases is 

clear, the normalization model that currently uses a LASSO 

regression algorithm needs a very huge amount of memory. 

The LASSO algorithm needs a matrix of the parameter 

measurements in memory: as an example the data for one 

engine from a set of 500 medium range flights with 100 

parameters weight around 1.5 Gb when acquired at 1 Hz. 

Even this volume of data is not easily manageable with 

classical tools and standard algebraic operations such as 

singular values decomposition (SVD) which is the base tool 

in linear compression. Hence it is only possible to calibrate 

this model on ground on a subsample of data we may 

download from a small subset of aircrafts which owners (the 

airlines or military) let us have access to their digital flight 

data recorders (DFDR, the black boxes). The resulting 

model transferred on each engine is finally a general 

approximation. It misses the specificity of each engine or 

event the particular way each company and pilot operates its 

aircrafts. 

2. STATISTIC MIXTURE MODEL 

To solve our normalization problem iteratively with not too 

much memory resources involved we used a mixture of 

probabilistic principal component analysis (MPPCA) model. 

Such model is an extension of the classical PCA which goal 

is to extract a reduced number of dimensions on which the 

data may be explained. The reduction of dimension enables 

the computation of meaningful distances
1
 and allows the 

                                                           
1 Distances are needed to compute a score based on the likelihood of the 
difference between observation and model estimation. In high dimension, 

Figure 1 – The mains steps of any diagnostic application for aircraft engine monitoring. 
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computation of scores. However if the general behavior of 

observations is not linear a classical PCA algorithm will 

fail. A nice solution is to make the hypothesis that in each 

flight mode, the local behavior of the engine may have a 

linear representation. The MPPCA algorithm will use EM 

(expectation/maximization) optimization scheme to identify 

the clusters and to build the local projections. 

We consider that we dispose of a datastream   
          

 , where the x are independent realizations of 

a random vector       . In addition,             are 

assumed to be independent realizations of an unobserved 

(latent) random variable Z with values in           (there 

exists K different modes.) The MPPCA model assumes that 

the observed random vector        is, conditionally to Z, 

linked to a d-dimensional latent random vector        

through a linear transformation of the form: 

                (1) 

where    is the p × d orthogonal transformation matrix, 

      
  is the mean vector of the k-th factor analyzer and 

      is a noise term. The dimension d of the latent vector 

is such that     and assumed to be known (Figure 2 

below shows an illustration of K=2 d=2D subspaces in a 

p=3D domain). 

 

Figure 2 – Illustration of two Gaussian d=2 subspaces in a 

main p=3 dimension space. 

Moreover,   is assumed to be, conditionally to Z, a centered 

Gaussian noise term with a diagonal covariance matrix     : 

                . (2) 

Besides, the unobserved latent factor      is assumed to 

be, conditionally to Z, distributed according to a Gaussian 

density function such as: 

                                                                                                  
distances lose their signification which is also known as the curse of high 

dimensions. We try to limit ourselves to a selected dimension smaller than 
5. 

              . (3) 

This implies that the conditional distribution of X is also 

Gaussian: 

                        (4) 

and its marginal distribution is therefore a mixture of 

Gaussians: 

                   

 

   

 (5) 

where    is the mixture proportion for the k-th component, 

  is the multivariate Gaussian density function 

 

           
 

    
 
        

 
 

  

      
 

 
      

   
          

(6) 

and      
        . 

In order to facilitate the description of our online inference 

procedure, let us slightly re-parameterize the above model. 

Let us first introduce the orthonormal transformation matrix 

   which is such that its j-th column               

where     is the corresponding column of   . If the 

transformation matrix    is orthonormal, it is then 

necessary to report the variance of the latent factor within 

the distribution of the latent factor.  

We therefore now assume that               where 

                  . The marginal distribution of X is 

then still a mixture of Gaussians but with covariance 

matrices       
          . By denoting by    

        the p × p matrix made of    and an orthonormal 

complementary   , the projected covariance matrix       
  

has the following form: 

 

 
 
 
 
     
   
     

  

  
    
   
    

 
 

 
 
 

   

       

 

where            and       , for         and 

        . With these notations, the mixture of PCA model 

is fully parameterized by the set of parameters  

          with each                            . 

It can be shown (Bouveyron, Girard, & Schmid, 2007) that 

the MPPCA model is identifiable and its inference can be 

done using a simple EM algorithm. In particular, the update 
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formula in the M step for the orientation matrices    and 

the variance parameters     and    are as follows: 

 the d columns of    are estimated by the 

eigenvectors associated with the d largest 

eigenvalues of the empirical covariance matrix    

of the k-th group, 

 the empirical covariance matrix of the k-th group is 

   
 

 
                         where at 

each current step                . 

     is estimated by the j-th largest eigenvalues of 

  , 

    is estimated by the residual variance    
 

   
            

 
    . 

In addition, these update formulas illustrate the strong link 

between MPPCA and the principal component analysis 

(PCA) method, since they both consider eigenvectors 

corresponding to the largest eigenvalues of the covariance 

matrix eigen decomposition. 

3. ONLINE INFERENCE OF PARAMETERS 

A standard way to estimate model parameters in parametric 

mixture models is to maximize the (observed) log-

likelihood of the data. 

                       

 

   

 

   

 (7) 

Note that we prefer the log-likelihood over the likelihood, as 

it is much more convenient to work with the former from a 

mathematical point of view. The maximum likelihood 

method then proposes to estimate the parameters of the 

model θ by                  . 

As we saw earlier, complete data                    
           are composed of pairs of data x and class 

information z. The complete log-likelihood            is the 

log-likelihood calculated from the complete data: 

               
                   

 

   

 

   

  (8) 

Here, we have defined t as the indicator variable of the 

classes, so that if      for a data sample i, then   
      

and   
   
       . 

In order to extend MPPCA to the online setting, we develop 

hereafter an online EM-based algorithm which incorporates 

a probabilistic version of the incremental PCA (Hall, 

Marshall, & Martin, 1998). We consider here a setting 

where data samples are arriving in an online manner and 

each data sample is being discarded after being processed 

(Bellas, Bouveyron, Cottrell, & Lacaille, 2013). 

Let us assume that we initially have observed a dataset of    

data samples           
  and that we have obtained an 

initial estimate        of these data. In practice, we obtain an 

initial estimation of the model parameters with a standard 

MPPCA iterative EM algorithm on this initial dataset. Let 

us set      and consider the arrival of a new data sample 

      
 . 

The objective is therefore to update the estimate of θ from 

the sole knowledge of       and     . This is a two-step 

procedure which involves an expectation step (E-step) and a 

maximization step (M-step). 

3.1. The E-step 

Before updating the estimate of θ, it is necessary to compute 

the expectation of the complete log-likelihood  

             
    conditionally to the current estimate 

     . 

This quantity will be maximized in the second step to obtain 

the new estimate         of θ. As with all mixture models, 

the computation of the conditional expectation of the 

complete log-likelihood reduces, in the context of the 

MPPCA model, to the computation of the probabilities 

  
                      that the new data sample 

belongs to the k-th mixture component (Figure 3). These 

probabilities can be computed as follows: 

 

  
     

 
             

   
 

              
   
  

   

 

  

      
 
   

            
           

 
   

  

(9) 

where the classification function    has the following form: 

 

                  

  
 

  
         

  

                                

 

   

 
(10) 

with   

     
        

       
- 
  
 

          
   -       
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Figure 3 – Geometric interpretation of the probability that a 

sample belongs to a given class. 

3.2. The M-step 

Once the posterior probabilities   
     

 have been computed, 

we update the model parameters so that they maximize 

             
    . In order to derive an online inference 

strategy which does not keep all past data samples, it is 

necessary to make use of the following approximation: 

 

             
                  

        

   
                     

     

 

   

 
(11) 

Then, it is straightforward to show that the update formulas 

for the mixture proportions    and the component means 

  , for every component      , are: 

 

  
        

    
 

   
   
        

    , 

  
      

 

  
        

     
      

          , 
(12) 

where   
     

   
   
   

     
 and      

   
     . 

We then want to estimate the parameters   ,     and   , for 

      and      . We have already seen that the 

maximization of              
     with respect to these 

parameters is equivalent to the eigen decomposition of the 

empirical covariance matrix    for each component 

     . The problem that we seek to solve can be 

therefore stated as follows: having already calculated 

eigenvectors   
    and eigenvalues   

   
 from the n first data 

samples, we want to update those parameters on the arrival 

of a (n+1)-th data sample. In particular, on the arrival of the 

new data sample xn+1, the new eigenproblem that we need to 

solve is: 

   
       

         
       

     
 (13) 

where   
                     and this for       . 

To begin with, let us define: 

 
  
         

        
            

    

  
         

            
       

     
     

 (14) 

where   
     

 is the projection of the data sample on the 

subspace defined by the eigenvectors and   
     

 is the 

residue of the retro-projection on the original space. With 

these notations, the new eigenvectors   
     

 correspond to a 

rotation of the old ones plus the unit residue vector     
     

: 

    
       

  
     

   
      

 

         
      

 
  

             

  (15) 

and thus the new eigenvectors may be written: 

   
         

       
        

     
 (16) 

where   
     

 is a rotation matrix of size (d+1)×(d+1). Note 

that   
   

 is a p × d matrix, since we have discarded the p−d 

less significant eigenvalues. The new covariance matrix 

  
     

 for the class k is given by: 

   
      

  
   

  
     

  
    

  
   

   
      

       (17) 

where we have set      
     

         
     

 . Then, by 

substituting equations (16) and (17) into equation (13) we 

get
2
: 

 
   

          
  
   

  
     

  
    

  
   

   
     

 
          

          
     

 

   
       

     
 

(18) 

The above problem can be written as: 

 
 
  
   

  
     

   
   

 

  
  

  
   

   
      

  
 
 
 
 
  

 
 
 

 
 
 
 
  

 

     
     

 

   
       

     
 

(19) 

where we have set   
         

     
   . The solution to this 

new eigenproblem yields the rotation matrix   
     

 and the 

new eigenvalues   
     

 directly. Then, the new 

eigenvectors can be obtained using equation (16). Note that 

                                                           
2 For simplicity we omit temporal subscript       for vectors    and     
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both   
     

 and   
     

 are square matrices of dimension 

d+1, that is, we only need to solve an eigenproblem of 

dimension d+1 and not p. The update formulas for the 

variance parameters     and    are then: 

 
   
         

       

  
      

 

   
      

           
      

    . 
(20) 

4. COMPARISONS WITH ONLINE EM AND CEM 

We compare online MPPCA with two other online 

algorithms, online EM (Titterington, 1984) and online CEM 

(Samé, Ambroise, & Govaert, 2007). Note that these latter 

have not been designed to handle high-dimensional data. 

This benchmark was done on simulated data because we 

could control the real problem dimension which is not the 

case with real observations. An application on turbofan 

engine measurements is given in the next section. 

For this experiment, we have generated a dataset of n = 

12000 data samples in    based on the assumption that data 

live in low-dimensional subspaces, with p = 30 and K = 3. 

Hereafter, we refer to this dataset as    . The mixture 

proportions are π1 = 0.4 and π2 = π3 = 0.3. For simplicity, we 

have considered that for each class, the variance is common 

across all dimensions, that is       , for       and 

     . We have set a1 = 150, a2 = 75, a3 = 50, b1 = b2 = 

b3 = 5 and µ1 = 0, µ2 = {0…5…0} and µ3 = {0…−5…0}, 

with             
 . We have set the intrinsic dimension 

(dimension of the subspaces) at d = 2. 

We also simulate a second dataset of lower dimension (p = 

10) , generated with the same parameters as the former. We 

will refer to this new dataset as    .  

Our goal was to study the behavior of the three algorithms 

in low dimension and then illustrate the capability of online 

MPPCA to cluster efficiently even in high dimension. 

We have evaluated the three algorithms on the quality of 

their estimation of the class means and on the accuracy of 

the clustering produced. The quality of the estimation of the 

means was taken to be the square of the distance of the 

estimated means to the true ones, averaged over all K = 3 

classes, a measure known as the Mean Square Error (MSE) 

in statistics 

      
 

 
  

 

 
           

 

 

   

 

 

   

 (21) 

Online MPPCA, online EM and online CEM were 

initialized 30 times by a standard MPPCA, an EM and a 

CEM, respectively, of which the initialization giving the 

highest BIC value was kept. 

Figure 4 and Figure 5 show the comparative performance of 

online MPPCA (black), online EM (red) and online CEM 

(blue) for the datasets     and    , respectively. 

For the dataset     it is clear, both from the clustering 

accuracy and the MSE that online MPPCA converges faster 

than the other two algorithms. 

 

Figure 4 – Evolution of MSE for the dataset     versus the 

number of data samples for online MPPCA (black solid), 

online EM (red dashed) and online CEM (blue dotted). 

 

Figure 5 – Evolution of MSE for the dataset     versus the 

number of data samples for online MPPCA (black solid), 

online EM (red dashed) and online CEM (blue dotted). 

5. APPLICATION TO ENGINE HEALTH MONITORING 

We test the proposed method to real data issued from the 

aircraft engine Health Monitoring domain. The data were 

obtained by Snecma. 

Typically, there exists different phases during a flight, called 

flight modes: taking-off, cruising, landing etc. Each test is 

actually a sequence of alternating stationary and non-

stationary phases at different levels. The stationary phases 

correspond in general to such flight modes, while the non-

stationary ones reflect the transition between two such 

phases. Nevertheless, a flight mode can include multiple 

stationary phases, that is, a stationary control on the data is 

not enough to detect the flight modes. 

Aircraft engineers can identify these modes by looking at 

the data but this can be extremely time-consuming. 

Moreover, due to the high dimensionality of data, there can 

be relations that humans cannot perceive. Note that by 
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knowing, at any given time, in which flight mode the engine 

currently is, tasks like anomaly detection can be performed 

much more reliably, since the ’local’ context of the data is 

also taken into account. 

The experiment below (Figure 6) involves a MPPCA stage 

used to build a residual vector that is finally classified with a 

self organizing map (SOM). The score represents the 

distance to the corresponding class center, and the fault 

identification is obtained as the map cell number. 

The data simulates real engine normal degradation (usual 

wear) to be detected by trend monitoring tools. The result 

appears to be pertinent for operational analysis as the MRO 

operator usually waits for confirmation before any customer 

notification.  

Figure 6 – Scoring and identification of trend faults using a self organizing map after MPPCA normalization. 

Green dots are the true detections and red ones the false alarms. POD stands for probability of detection and is 

given as a point to point count, as well as the PFA which is the probability of false alarm. 
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6. CONCLUSION 

We have proposed an online inference algorithm for the 

MPPCA model which relies on an EM-based procedure and 

a probabilistic and incremental version of PCA. The 

proposed strategy allows to incrementally update the 

estimates of the MPPCA parameters at the arrival of a new 

data sample. It allows also providing low-dimensional 

visualizations of the data based on sufficient information. 

Model selection is also considered in the online setting 

through parallel computing. Numerical experiments on 

simulated and real data have shown that the online MPPCA 

algorithm performs better in high-dimensional spaces 

compared to existing online EM-based algorithms. 

NOMENCLATURE 

ACARS Aircraft Communications Addressing and 

Reporting System 

AIC Akaike Information Criterion 

BIC Bayesian Information Criterion 

DFDR Digital Flight Data Recorder 

EM Expectation Maximization 

LASSO Least Absolute Shrinkage and Selection 

Operator 

MPPCA Mixture of Probabilistic PCA 

MRO Maintenance Repair Overhaul 

MSE Mean Square Error 

PCA Principal Component Analysis 

SOM Self Organizing Map 
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